
Long Papers Program

Tue 10:30-12:00 pm - Rose Ballroom B
Registration-Based Language Abstractions

 - Samuel Davis, University of British Columbia, Canada
 - Gregor Kiczales, University of British Columbia, Canada

Programming language innovation has been hindered by the difficulty of making changes to
existing languages. A key source of difficulty is the tyrannical nature of existing approaches to
realizing languages—adding a new language construct means that any tool, document or
programmer that works with the language must be prepared to deal with that construct.

A registration-based approach makes it possible to define language constructs that are not
tyrannical. They are instead transient—the program appears to be written using the constructs
only so long as a given programmer wants to see it that way. This approach may have the
potential to greatly facilitate programming language innovation.

Pinocchio: Bringing Reflection to Life with First-Class Interpreters

 - Toon Verwaest, SCG University of Berne, Switzerland, Switzerland
 - Camillo Bruni, SCG University of Berne, Switzerland, Switzerland
 - David Gurtner, SCG University of Berne, Switzerland, Switzerland
 - Adrian Lienhard, SCG University of Berne, Switzerland, Switzerland
 - Oscar Nierstrasz, SCG University of Berne, Switzerland, Switzerland

To support development tools like debuggers, runtime systems need to provide a
meta-programming interface to alter their semantics and access internal data. Reflective
capabilities are typically fixed by the Virtual Machine (VM). Unanticipated reflective features
must either be simulated by complex program transformations, or they require the development
of a specially tailored VM. We propose a novel approach to behavioral reflection that eliminates
the barrier between applications and the VM by manipulating an explicit tower of first-class
interpreters. Pinocchio is a proof-of-concept implementation of our approach which enables
radical changes to the interpretation of programs by explicitly instantiating subclasses of the
base interpreter. We illustrate the design of Pinocchio through non-trivial examples that extend
runtime semantics to support debugging, parallel debugging, and back-in-time object-flow
debugging. Although performance is not yet addressed, we also discuss numerous
opportunities for optimization, which we believe will lead to a practical approach to behavioral
reflection.

Concurrency by Modularity: Design Patterns, a Case in Point

 1 / 5

Long Papers Program

 - Hridesh Rajan, Iowa State University, United States
 - Steven Kautz, Iowa State University, United States
 - Wayne Rowcliffe, Iowa State University, United States

General purpose object-oriented programs typically aren't embarrassingly parallel. For these
applications, finding enough concurrency remains a challenge in program design. To address
this challenge, in the Panini project we are looking at reconciling concurrent program design
goals with modular program design goals. The main idea is that if programmers improve the
modularity of their programs they should get concurrency for free. In this work we describe one
of our directions to reconcile these two goals by enhancing Gang-of-Four (GOF) object-oriented
design patterns. GOF patterns are commonly used to improve the modularity of object-oriented
software. These patterns describe strategies to decouple components in design space and
specify how these components should interact. Our hypothesis is that if these patterns are
enhanced to also decouple components in execution space applying them will concomitantly
improve the design and potentially available concurrency in software systems. To evaluate our
hypothesis we have studied all 23 GOF patterns. For 18 patterns out of 23, our hypothesis has
held true. Another interesting preliminary result reported here is that for 17 out of these 18
studied patterns, concurrency and synchronization concerns were completely encapsulated in
our concurrent design pattern framework.

Wed 10:30-12:00 pm - Rose Ballroom B
Understanding Reduced Resource Computing

 - Martin C Rinard, MIT, United States
 - Henry Hoffman, MIT, United States
 - Sasa Misailovic, MIT, United States
 - Stelios Sidiroglou, MIT, United States

We present several general, broadly applicable mechanisms that enable computations to
execute with reduced resources, typically at the cost of some loss in the accuracy of the result
they produce. We discuss several general computational patterns that interact well with these
resource reduction mechanisms, present a concrete manifestation of these patterns in the form
of simple model programs, perform simulation-based explorations of the quantitative
consequences of applying these mechanisms to our model programs, and relate the model
computations (and their interaction with the resource reduction mechanisms) to more complex
benchmark applications drawn from a variety of fields.

Programming With Time

 2 / 5

Long Papers Program

 - Andrew Sorensen, Australian National University, Australia
 - Henry Gardner, Australian National University, Australia

The act of computer programming is generally considered to be temporally removed from a
computer program's execution. In this paper we discuss the idea of programming as an activity
that takes place within the temporal bounds of a real-time computational process and its
interactions with the physical world. We ground these ideas within the context of livecoding – a
live audiovisual performance practice. We then describe how the development of the
programming environment "Impromptu" has addressed our ideas of programming with time and
the notion of the programmer as an agent in a cyber-physical system.

Language Virtualization for Heterogeneous Parallel Computing

 - Hassan Chafi, Stanford University, United States
 - Zach DeVito, Stanford University, United States
 - Adriaan Moors, EPFL, Switzerland
 - Tiark Rompf, EPFL, Switzerland
 - Arvind Sujeeth, Stanford University, United States
 - Pat Hanrahan, Stanford University, United States
 - Kunle Olukotun, Stanford University, United States
 - Martin Odersky, EPFL, Switzerland

As heterogeneous parallel systems become dominant, application developers are being forced
to turn to an incompatible mix of low level programming models (e.g. OpenMP, MPI, CUDA,
OpenCL). However, these models do little to shield developers from the difficult problems of
parallelization, data decomposition and machine-specific details. Ordinary programmers are
having a difficult time using these programming models effectively. To provide a programming
model that addresses the productivity and performance requirements for the average
programmer, we explore a domain-specific approach to heterogeneous parallel programming.
We propose language virtualization as a new principle that enables the construction of highly
efficient parallel domain specific languages that are embedded in a common host language. We
define criteria for language virtualization and present techniques to achieve them.We present
two concrete case studies of domain-specific languages that are implemented using our
virtualization approach.

Thu 10:30-12:00 pm - Rose Ballroom B
Flexible Modeling Tools for Pre-Requirements Analysis: Conceptual
Architecture and Research Challenges

 3 / 5

Long Papers Program

 - Harold Ossher, IBM TJ Watson Research Center, United States
 - Rachel Bellamy, IBM TJ Watson Research Center, United States
 - Ian Simmonds, IBM TJ Watson Research Center, Israel
 - David Amid, IBM Haifa Research Center, Israel
 - Ateret Anaby-Tavor, IBM Haifa Research Center, Israel
 - Matthew Callery, IBM TJ Watson Research Center, United States
 - Michael Desmond, IBM T.J. Watson Research Center, United States
 - Jacqueline de Vries, IBM T.J. Watson Research Center, United States
 - Amit Fisher, IBM Haifa Research Center, United States
 - Sophia Krasikov, IBM T.J. Watson Research Center, United States

There is a serious tool gap at the very start of the software lifecycle, before requirements are
formulated. Pre-requirements analysts gather information, organize it to gain insight, envision
alternative possible futures, and present insights and recommendations to stakeholders. They
typically use office tools, which give them great freedom, but no help with consistency
management, change propagation or migration of information to downstream modeling tools.
Despite these downsides to office tools, they are still used in preference to modeling tools,
which are too hard to learn and too constraining. This paper introduces the notion of flexible
modeling tools, which blend the advantages of office and modeling tools. We propose a
conceptual architecture for such tools, and outline a series of research challenges to be met in
the course of realizing them. We also briefly describe the Business Insight Toolkit (BITKit), a
prototype tool that embodies this architecture.

To Upgrade or Not to Upgrade: Impact of Online Upgrades across Multiple
Administrative Domains

 - Tudor Dumitras, Carnegie Mellon University, United States
 - Priya Narasimhan, Carnegie Mellon University, United States
 - Eli Tilevich, Virginia Tech, United States

Online software upgrades are often plagued by runtime behaviors that are poorly understood
and difficult to ascertain. For example, the interactions among multiple versions of the software
expose the system to race conditions that can introduce latent errors or data corruption.
Moreover, industry trends suggest that online upgrades are currently needed in large-scale
enterprise systems, which often span multiple administrative domains (e.g., Web 2.0
applications that rely on AJAX client-side code or systems that lease cloudcomputing
resources). In such systems, the enterprise does not control all the tiers of the system and
cannot coordinate the upgrade process, making existing techniques inadequate to prevent
mixed-version races. In this paper, we present an analytical framework for impact assessment,
which allows system administrators to directly compare the risk of following an online upgrade
plan with the risk of delaying or canceling the upgrade. We also describe an executable model

 4 / 5

Long Papers Program

that implements our formal impact assessment. Through three case studies, we demonstrate
that our model correctly identifies the situations where the risk of incorrect behavior during an
online upgrade exceeds that of continuing the execute an older version with known software
defects. Our model enables a systematic approach for deciding whether an online upgrade is
appropriate and when is the best time to execute it, thereby reducing unexpected service
interruptions and undesirable program behaviors.

Managing Ambiguity in Programming by Finding Unambiguous Examples

 - Kenneth C. Arnold, MIT Media Lab, MIT Mind Machine Project, United States
 - Henry Lieberman, MIT Media Lab, MIT Mind Machine Project, United States

We propose a new way to raise the level of discourse in the programming process: permit
ambiguity, but manage it by linking it to unambiguous examples. This allows programming
environments to work with high-level descriptions that lack precise semantics, such as natural
language descriptions or conceptual diagrams, without requiring programmers to formulate their
ideas in a formal language first. As an example of this idea, we present Zones, a code search
and reuse interface that connects code with ambiguous natural language statements about its
purpose. The backend, called ProcedureSpace, induces relationships between statements
purpose, static code analysis features, and natural language background knowledge.
ProcedureSpace can search for code given statements of purpose or vice versa, and can find
code that was never annotated or commented. Since completed Zones searches become
annotations, system coverage grows with user interaction. Users in a preliminary study found
that reasoning jointly over natural language and programming language helped them reuse
code.

 5 / 5

